An intact facet capsular ligament modulates behavioral sensitivity and spinal glial activation produced by cervical facet joint tension.
نویسندگان
چکیده
STUDY DESIGN In vivo experiments using a rat model of painful facet joint distraction. OBJECTIVE To determine whether tension of the facet capsular ligament is requisite for producing pain for joint loading and to define effects on spinal glial activation. SUMMARY OF BACKGROUND DATA Cervical facet joint loading may initiate pain for certain conditions. While facet capsule tension has been proposed as requisite for pain, this hypothesis has not been tested. METHODS Using an established rat model of painful C6-C7 distraction, tension was applied after transection of the left facet capsule; the right capsule remained intact. Each rat (n = 8) received the same distraction simultaneously applied across both the intact and cut capsules. Sham procedures were performed on separate rats (n = 4) with no joint distraction. Bilateral forepaw mechanical allodynia was measured as a pain outcome. Cervical spinal cord tissue (C7) was harvested on day 7 to detect glial reactivity using immunohistochemistry. RESULTS Distraction mechanics were consistent with conditions eliciting persistent behavioral hypersensitivity. Allodynia was produced for an intact capsule and was significantly elevated over both the cut capsule (P < 0.004) and sham (P < 0.002). Transecting the capsule before distraction did not produce elevated allodynia, except on day 7. Spinal astrocytic reactivity paralleled allodynia; glial fibrillary acidic protein expression for an intact capsule was significantly greater than the cut and sham responses (P < 0.04), with no difference observed between the cut and sham spinal astrocytic reactivity. Spinal microglial activation did not differ between groups. CONCLUSION Results suggest ligament tension may be required to produce pain from facet joint loading. Further studies of other cellular responses are needed to define the mechanisms of painful facet joint injury.
منابع مشابه
In vivo cervical facet capsule distraction: mechanical implications for whiplash and neck pain.
While extensive research points to mechanical injury of the cervical facet joint as a mechanism of whiplash injury, findings remain speculative regarding its potential for causing pain. The purpose of this study was to examine the relationship between facet joint distraction, capsular ligament strain, cellular nociceptive responses, and pain. A novel rat model of in vivo facet joint injury was ...
متن کاملCapsular ligament involvement in the development of mechanical hyperalgesia after facet joint loading: behavioral and inflammatory outcomes in a rodent model of pain.
Whiplash injury can produce pain in the neck, arm, and hand, and has been associated with inflammation. However, the relationship between inflammatory responses and pain symptoms remains unknown, hindering the development of appropriate therapeutics for whiplash symptoms. Two joint loading paradigms were used separately in an established rat model of painful cervical facet joint distraction to ...
متن کاملMetabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury.
There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal ...
متن کاملSpinal neuronal plasticity is evident within 1 day after a painful cervical facet joint injury.
Excessive stretch of the cervical facet capsular ligament induces persistent pain and spinal plasticity at later time points. Yet, it is not known when such spinal modifications are initiated following this painful injury. This study investigates the development of hyperalgesia and neuronal hyperexcitability in the spinal cord after a facet joint injury. Behavioral sensitivity was measured in a...
متن کاملFacet joint kinematics and injury mechanisms during simulated whiplash.
STUDY DESIGN Facet joint kinematics and capsular ligament strains were evaluated during simulated whiplash of whole cervical spine specimens with muscle force replication. OBJECTIVES To describe facet joint kinematics, including facet joint compression and facet joint sliding, and quantify peak capsular ligament strain during simulated whiplash. SUMMARY OF BACKGROUND DATA Clinical studies h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Spine
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2008